3.360 \(\int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=188 \[ \frac {2 a (A b-a B)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A+2 a b B-A b^2\right )}{d \left (a^2+b^2\right )^2 \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{5/2}}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{5/2}} \]

[Out]

-(A-I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(5/2)/d-(A+I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))/(a+I*b)^(5/2)/d+2*(A*a^2-A*b^2+2*B*a*b)/(a^2+b^2)^2/d/(a+b*tan(d*x+c))^(1/2)+2/3*a*(A*b-B*a)/b/
(a^2+b^2)/d/(a+b*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 188, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3591, 3529, 3539, 3537, 63, 208} \[ \frac {2 a (A b-a B)}{3 b d \left (a^2+b^2\right ) (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A+2 a b B-A b^2\right )}{d \left (a^2+b^2\right )^2 \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{5/2}}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

-(((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(5/2)*d)) - ((A + I*B)*ArcTanh[Sqrt[a
 + b*Tan[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(5/2)*d) + (2*a*(A*b - a*B))/(3*b*(a^2 + b^2)*d*(a + b*Tan[c + d
*x])^(3/2)) + (2*(a^2*A - A*b^2 + 2*a*b*B))/((a^2 + b^2)^2*d*Sqrt[a + b*Tan[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{5/2}} \, dx &=\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {\int \frac {A b-a B+(a A+b B) \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx}{a^2+b^2}\\ &=\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A-A b^2+2 a b B\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {2 a A b-a^2 B+b^2 B+\left (a^2 A-A b^2+2 a b B\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{\left (a^2+b^2\right )^2}\\ &=\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A-A b^2+2 a b B\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {(i A-B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a+i b)^2}-\frac {(i A+B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a-i b)^2}\\ &=\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A-A b^2+2 a b B\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}+\frac {(A-i B) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b)^2 d}+\frac {(A+i B) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b)^2 d}\\ &=\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A-A b^2+2 a b B\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}-\frac {(i (A+i B)) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b)^2 b d}+\frac {(i A+B) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b)^2 b d}\\ &=-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{5/2} d}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{5/2} d}+\frac {2 a (A b-a B)}{3 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))^{3/2}}+\frac {2 \left (a^2 A-A b^2+2 a b B\right )}{\left (a^2+b^2\right )^2 d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.66, size = 325, normalized size = 1.73 \[ \frac {\frac {2 a \left (a^2+b^2\right ) (A b-a B)}{(a+b \tan (c+d x))^{3/2}}+\frac {6 b \left (a^2 A+2 a b B-A b^2\right )}{\sqrt {a+b \tan (c+d x)}}+\frac {3 b \left (-\left (a^2 \left (A \sqrt {-b^2}+b B\right )\right )+2 a b \left (A b-\sqrt {-b^2} B\right )+b^2 \left (A \sqrt {-b^2}+b B\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a-\sqrt {-b^2}}}-\frac {3 b \left (a^2 A \sqrt {-b^2}-a^2 b B+2 a A b^2+2 a \sqrt {-b^2} b B+A \left (-b^2\right )^{3/2}+b^3 B\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a+\sqrt {-b^2}}}}{3 b d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(5/2),x]

[Out]

((3*b*(-(a^2*(A*Sqrt[-b^2] + b*B)) + b^2*(A*Sqrt[-b^2] + b*B) + 2*a*b*(A*b - Sqrt[-b^2]*B))*ArcTanh[Sqrt[a + b
*Tan[c + d*x]]/Sqrt[a - Sqrt[-b^2]]])/(Sqrt[-b^2]*Sqrt[a - Sqrt[-b^2]]) - (3*b*(2*a*A*b^2 + a^2*A*Sqrt[-b^2] +
 A*(-b^2)^(3/2) - a^2*b*B + b^3*B + 2*a*b*Sqrt[-b^2]*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sqrt[-b^2]]]
)/(Sqrt[-b^2]*Sqrt[a + Sqrt[-b^2]]) + (2*a*(a^2 + b^2)*(A*b - a*B))/(a + b*Tan[c + d*x])^(3/2) + (6*b*(a^2*A -
 A*b^2 + 2*a*b*B))/Sqrt[a + b*Tan[c + d*x]])/(3*b*(a^2 + b^2)^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, need to choose a branch for the root of a polynomial with par
ameters. This might be wrong.The choice was done assuming [d]=[61,-16]sym2poly/r2sym(const gen & e,const index
_m & i,const vecteur & l) Error: Bad Argument ValueWarning, need to choose a branch for the root of a polynomi
al with parameters. This might be wrong.The choice was done assuming [d]=[-66,57]sym2poly/r2sym(const gen & e,
const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,c
onst vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) E
rror: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument
Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym
(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,cons
t index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const
 vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error
: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valu
esym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con
st gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const in
dex_m & i,const vecteur & l) Error: Bad Argument ValueWarning, integration of abs or sign assumes constant sig
n by intervals (correct if the argument is real):Check [abs(t_nostep^2-1)]Discontinuities at zeroes of t_noste
p^2-1 were not checkedEvaluation time: 81.63Done

________________________________________________________________________________________

maple [B]  time = 0.29, size = 12841, normalized size = 68.30 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 22.34, size = 9464, normalized size = 50.34 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((tan(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(5/2),x)

[Out]

(log(((((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2
*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10
*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*((a + b*tan(c + d*x))^(1/2)*(320*B^2*a^4*b^14*d^3 - 16*B
^2*b^18*d^3 + 1024*B^2*a^6*b^12*d^3 + 1440*B^2*a^8*b^10*d^3 + 1024*B^2*a^10*b^8*d^3 + 320*B^2*a^12*b^6*d^3 - 1
6*B^2*a^16*b^2*d^3) + ((((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4
- 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5
*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(896*B*a^6*b^15*d^4 - 32*B*b^21*d^4 - 1
60*B*a^2*b^19*d^4 - 128*B*a^4*b^17*d^4 - ((((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 16
00*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(a^10
*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))
^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*
a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d
^5))/4 + 3136*B*a^8*b^13*d^4 + 4928*B*a^10*b^11*d^4 + 4480*B*a^12*b^9*d^4 + 2432*B*a^14*b^7*d^4 + 736*B*a^16*b
^5*d^4 + 96*B*a^18*b^3*d^4))/4))/4 - 96*B^3*a^3*b^13*d^2 - 240*B^3*a^5*b^11*d^2 - 320*B^3*a^7*b^9*d^2 - 240*B^
3*a^9*b^7*d^2 - 96*B^3*a^11*b^5*d^2 - 16*B^3*a^13*b^3*d^2 - 16*B^3*a*b^15*d^2)*(((320*B^4*a^2*b^8*d^4 - 16*B^4
*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*
a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8
*b^2*d^4))^(1/2))/4 + (log(((-((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^
4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d
^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*((a + b*tan(c + d*x))^(1/2)*(320*
B^2*a^4*b^14*d^3 - 16*B^2*b^18*d^3 + 1024*B^2*a^6*b^12*d^3 + 1440*B^2*a^8*b^10*d^3 + 1024*B^2*a^10*b^8*d^3 + 3
20*B^2*a^12*b^6*d^3 - 16*B^2*a^16*b^2*d^3) + ((-((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4
 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/
(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(896*B*a^6*b^15
*d^4 - 32*B*b^21*d^4 - 160*B*a^2*b^19*d^4 - 128*B*a^4*b^17*d^4 - ((-((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 -
1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2
+ 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(
1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13
440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^1
9*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 3136*B*a^8*b^13*d^4 + 4928*B*a^10*b^11*d^4 + 4480*B*a^12*b^9*d^4 + 2432*B*a^
14*b^7*d^4 + 736*B*a^16*b^5*d^4 + 96*B*a^18*b^3*d^4))/4))/4 - 96*B^3*a^3*b^13*d^2 - 240*B^3*a^5*b^11*d^2 - 320
*B^3*a^7*b^9*d^2 - 240*B^3*a^9*b^7*d^2 - 96*B^3*a^11*b^5*d^2 - 16*B^3*a^13*b^3*d^2 - 16*B^3*a*b^15*d^2)*(-((32
0*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2)
 + 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^
4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2))/4 - log(- (((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*
b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^
4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2
)*((a + b*tan(c + d*x))^(1/2)*(320*B^2*a^4*b^14*d^3 - 16*B^2*b^18*d^3 + 1024*B^2*a^6*b^12*d^3 + 1440*B^2*a^8*b
^10*d^3 + 1024*B^2*a^10*b^8*d^3 + 320*B^2*a^12*b^6*d^3 - 16*B^2*a^16*b^2*d^3) - (((320*B^4*a^2*b^8*d^4 - 16*B^
4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2
*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d
^4 + 80*a^8*b^2*d^4))^(1/2)*((((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^
4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*
b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1
/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^1
1*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5)
 - 32*B*b^21*d^4 - 160*B*a^2*b^19*d^4 - 128*B*a^4*b^17*d^4 + 896*B*a^6*b^15*d^4 + 3136*B*a^8*b^13*d^4 + 4928*B
*a^10*b^11*d^4 + 4480*B*a^12*b^9*d^4 + 2432*B*a^14*b^7*d^4 + 736*B*a^16*b^5*d^4 + 96*B*a^18*b^3*d^4)) - 96*B^3
*a^3*b^13*d^2 - 240*B^3*a^5*b^11*d^2 - 320*B^3*a^7*b^9*d^2 - 240*B^3*a^9*b^7*d^2 - 96*B^3*a^11*b^5*d^2 - 16*B^
3*a^13*b^3*d^2 - 16*B^3*a*b^15*d^2)*(((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4
*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) - 4*B^2*a^5*d^2 + 40*B^2*a^3*b^2*d^2 - 20*B^2*a*b^4*d^2)/(16*a^10*d^
4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2) - log(- (-((320*
B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) +
 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*
b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*((a + b*tan(c + d*x))^(1/2)*(320*B^2*a^4*b^14*d^3 - 16*B^2*
b^18*d^3 + 1024*B^2*a^6*b^12*d^3 + 1440*B^2*a^8*b^10*d^3 + 1024*B^2*a^10*b^8*d^3 + 320*B^2*a^12*b^6*d^3 - 16*B
^2*a^16*b^2*d^3) - (-((320*B^4*a^2*b^8*d^4 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 4
00*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2 - 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4
+ 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*((-((320*B^4*a^2*b^8*d^4 - 16*B^
4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2 - 40*B^2
*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d
^4 + 80*a^8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 +
 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880
*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5) - 32*B*b^21*d^4 - 160*B*a^2*b^19*d^4 - 128*B*a^4*b^17*d^4
+ 896*B*a^6*b^15*d^4 + 3136*B*a^8*b^13*d^4 + 4928*B*a^10*b^11*d^4 + 4480*B*a^12*b^9*d^4 + 2432*B*a^14*b^7*d^4
+ 736*B*a^16*b^5*d^4 + 96*B*a^18*b^3*d^4)) - 96*B^3*a^3*b^13*d^2 - 240*B^3*a^5*b^11*d^2 - 320*B^3*a^7*b^9*d^2
- 240*B^3*a^9*b^7*d^2 - 96*B^3*a^11*b^5*d^2 - 16*B^3*a^13*b^3*d^2 - 16*B^3*a*b^15*d^2)*(-((320*B^4*a^2*b^8*d^4
 - 16*B^4*b^10*d^4 - 1760*B^4*a^4*b^6*d^4 + 1600*B^4*a^6*b^4*d^4 - 400*B^4*a^8*b^2*d^4)^(1/2) + 4*B^2*a^5*d^2
- 40*B^2*a^3*b^2*d^2 + 20*B^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a
^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2) + (log(8*A^3*b^16*d^2 - (((a + b*tan(c + d*x))^(1/2)*(320*A^2*a^4*b^14*d^3
 - 16*A^2*b^18*d^3 + 1024*A^2*a^6*b^12*d^3 + 1440*A^2*a^8*b^10*d^3 + 1024*A^2*a^10*b^8*d^3 + 320*A^2*a^12*b^6*
d^3 - 16*A^2*a^16*b^2*d^3) + ((((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b
^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*
d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(((((320*A^4*a^2*b^8*d^4 - 16*A^
4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2
*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^
8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*
b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*
d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 96*A*a*b^20*d^4 + 736*A*a^3*b^18*d^4 + 2432*A*a^5*b^16*d^4 + 44
80*A*a^7*b^14*d^4 + 4928*A*a^9*b^12*d^4 + 3136*A*a^11*b^10*d^4 + 896*A*a^13*b^8*d^4 - 128*A*a^15*b^6*d^4 - 160
*A*a^17*b^4*d^4 - 32*A*a^19*b^2*d^4))/4)*(((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 160
0*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(a^10*
d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2))/4 + 40*A^3*a^2*b^14*
d^2 + 72*A^3*a^4*b^12*d^2 + 40*A^3*a^6*b^10*d^2 - 40*A^3*a^8*b^8*d^2 - 72*A^3*a^10*b^6*d^2 - 40*A^3*a^12*b^4*d
^2 - 8*A^3*a^14*b^2*d^2)*(((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^
4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 +
 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2))/4 + (log(8*A^3*b^16*d^2 - (((a + b*t
an(c + d*x))^(1/2)*(320*A^2*a^4*b^14*d^3 - 16*A^2*b^18*d^3 + 1024*A^2*a^6*b^12*d^3 + 1440*A^2*a^8*b^10*d^3 + 1
024*A^2*a^10*b^8*d^3 + 320*A^2*a^12*b^6*d^3 - 16*A^2*a^16*b^2*d^3) + ((-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^
4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*
d^2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4
))^(1/2)*(((-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a
^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^
4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^
3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^1
0*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5))/4 + 96*A*a*b^20*d^4 + 736
*A*a^3*b^18*d^4 + 2432*A*a^5*b^16*d^4 + 4480*A*a^7*b^14*d^4 + 4928*A*a^9*b^12*d^4 + 3136*A*a^11*b^10*d^4 + 896
*A*a^13*b^8*d^4 - 128*A*a^15*b^6*d^4 - 160*A*a^17*b^4*d^4 - 32*A*a^19*b^2*d^4))/4)*(-((320*A^4*a^2*b^8*d^4 - 1
6*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40
*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 +
5*a^8*b^2*d^4))^(1/2))/4 + 40*A^3*a^2*b^14*d^2 + 72*A^3*a^4*b^12*d^2 + 40*A^3*a^6*b^10*d^2 - 40*A^3*a^8*b^8*d^
2 - 72*A^3*a^10*b^6*d^2 - 40*A^3*a^12*b^4*d^2 - 8*A^3*a^14*b^2*d^2)*(-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4
- 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*d^
2 - 20*A^2*a*b^4*d^2)/(a^10*d^4 + b^10*d^4 + 5*a^2*b^8*d^4 + 10*a^4*b^6*d^4 + 10*a^6*b^4*d^4 + 5*a^8*b^2*d^4))
^(1/2))/4 - log(((a + b*tan(c + d*x))^(1/2)*(320*A^2*a^4*b^14*d^3 - 16*A^2*b^18*d^3 + 1024*A^2*a^6*b^12*d^3 +
1440*A^2*a^8*b^10*d^3 + 1024*A^2*a^10*b^8*d^3 + 320*A^2*a^12*b^6*d^3 - 16*A^2*a^16*b^2*d^3) - (((320*A^4*a^2*b
^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^
5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 +
 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*(96*A*a*b^20*d^4 - (((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A
^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A
^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4
))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5
+ 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 + 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640
*a^19*b^4*d^5 + 64*a^21*b^2*d^5) + 736*A*a^3*b^18*d^4 + 2432*A*a^5*b^16*d^4 + 4480*A*a^7*b^14*d^4 + 4928*A*a^9
*b^12*d^4 + 3136*A*a^11*b^10*d^4 + 896*A*a^13*b^8*d^4 - 128*A*a^15*b^6*d^4 - 160*A*a^17*b^4*d^4 - 32*A*a^19*b^
2*d^4))*(((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b
^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8
*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2) + 8*A^3*b^16*d^2 + 40*A^3*a^2*b^14*d^2 + 72*
A^3*a^4*b^12*d^2 + 40*A^3*a^6*b^10*d^2 - 40*A^3*a^8*b^8*d^2 - 72*A^3*a^10*b^6*d^2 - 40*A^3*a^12*b^4*d^2 - 8*A^
3*a^14*b^2*d^2)*(((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A
^4*a^8*b^2*d^4)^(1/2) + 4*A^2*a^5*d^2 - 40*A^2*a^3*b^2*d^2 + 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80
*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2) - log(((a + b*tan(c + d*x))^(1/2)*(3
20*A^2*a^4*b^14*d^3 - 16*A^2*b^18*d^3 + 1024*A^2*a^6*b^12*d^3 + 1440*A^2*a^8*b^10*d^3 + 1024*A^2*a^10*b^8*d^3
+ 320*A^2*a^12*b^6*d^3 - 16*A^2*a^16*b^2*d^3) - (-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d
^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2
)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*(96
*A*a*b^20*d^4 - (-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*
A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 8
0*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 + 80*a^8*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^
22*d^5 + 640*a^3*b^20*d^5 + 2880*a^5*b^18*d^5 + 7680*a^7*b^16*d^5 + 13440*a^9*b^14*d^5 + 16128*a^11*b^12*d^5 +
 13440*a^13*b^10*d^5 + 7680*a^15*b^8*d^5 + 2880*a^17*b^6*d^5 + 640*a^19*b^4*d^5 + 64*a^21*b^2*d^5) + 736*A*a^3
*b^18*d^4 + 2432*A*a^5*b^16*d^4 + 4480*A*a^7*b^14*d^4 + 4928*A*a^9*b^12*d^4 + 3136*A*a^11*b^10*d^4 + 896*A*a^1
3*b^8*d^4 - 128*A*a^15*b^6*d^4 - 160*A*a^17*b^4*d^4 - 32*A*a^19*b^2*d^4))*(-((320*A^4*a^2*b^8*d^4 - 16*A^4*b^1
0*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40*A^2*a^3*
b^2*d^2 - 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b^4*d^4 +
80*a^8*b^2*d^4))^(1/2) + 8*A^3*b^16*d^2 + 40*A^3*a^2*b^14*d^2 + 72*A^3*a^4*b^12*d^2 + 40*A^3*a^6*b^10*d^2 - 40
*A^3*a^8*b^8*d^2 - 72*A^3*a^10*b^6*d^2 - 40*A^3*a^12*b^4*d^2 - 8*A^3*a^14*b^2*d^2)*(-((320*A^4*a^2*b^8*d^4 - 1
6*A^4*b^10*d^4 - 1760*A^4*a^4*b^6*d^4 + 1600*A^4*a^6*b^4*d^4 - 400*A^4*a^8*b^2*d^4)^(1/2) - 4*A^2*a^5*d^2 + 40
*A^2*a^3*b^2*d^2 - 20*A^2*a*b^4*d^2)/(16*a^10*d^4 + 16*b^10*d^4 + 80*a^2*b^8*d^4 + 160*a^4*b^6*d^4 + 160*a^6*b
^4*d^4 + 80*a^8*b^2*d^4))^(1/2) + ((2*A*a)/(3*(a^2 + b^2)) + (2*A*(a^2 - b^2)*(a + b*tan(c + d*x)))/(a^2 + b^2
)^2)/(d*(a + b*tan(c + d*x))^(3/2)) - ((2*B*a^2)/(3*(a^2 + b^2)) - (4*B*a*b^2*(a + b*tan(c + d*x)))/(a^2 + b^2
)^2)/(b*d*(a + b*tan(c + d*x))^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(5/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)/(a + b*tan(c + d*x))**(5/2), x)

________________________________________________________________________________________